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Abstract.14

Background: Lipidomics may provide insight into biochemical processes driving Alzheimer’s disease (AD) pathogenesis
and ensuing clinical trajectories.
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Objective: To identify a peripheral lipidomics signature associated with AD pathology and investigate its potential to predict
clinical progression.
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Methods: We used Bayesian elastic net regression to select plasma lipid classes associated with the CSF pTau/A�42 ratio
as a biomarker of AD pathology in preclinical and prodromal AD cases from the ADNI cohort. Consensus clustering of the
selected lipid classes was used to identify lipidomic endophenotypes and study their association with clinical progression.
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Results: In the APOE4-adjusted model, ether-glycerophospholipids, lyso-glycerophospholipids, free-fatty acids, cholesterol
esters, and complex sphingolipids were found to be associated with the CSF pTau/A�42 ratio. We found an optimal number
of five lipidomic endophenotypes in the prodromal and preclinical cases, respectively. In the prodromal cases, these clusters
differed with respect to the risk of clinical progression as measured by clinical dementia rating score conversion.
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Conclusion: Lipid alterations can be captured at the earliest phases of AD. A lipidomic signature in blood may provide a
dynamic overview of an individual’s metabolic status and may support identifying different risks of clinical progression.
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INTRODUCTION29

Current diagnostic research criteria for the30

early detection of Alzheimer’s disease (AD) are31

based on disease-defining biomarkers of amyloi-32

dosis, tauopathy, and neurodegeneration [1]. These33

biomarkers, however, are not precise enough to34

predict individual clinical trajectories and risk of35

clinical conversion [2]. More recently, multi-omics36

approaches have been studied to account for the37

heterogeneity of clinical courses in AD and iden-38

tify different clinic-pathological endophenotypes39

as a potential basis for personalized medicine40

[3, 4].41

As one important example, lipidomics provides42

insight into metabolic endophenotypes that may mod-43

ify the effect of AD pathology on neurodegeneration44

and clinical trajectories. Thus, lipids are involved45

in many downstream processes of AD pathology,46

such as membrane remodeling, modulation of trans-47

membrane proteins, including amyloid-� protein48

precursor (A�PP) and its secretases, maintaining49

blood-brain barrier function, myelination, cell sig-50

naling, and inflammation. In addition, they may even51

influence upstream events such as oxidative stress52

pathways and alterations of energy balance [5, 6].53

Recent genetic studies supported the role of lipids54

in AD pathogenesis even beyond the apolipopro-55

tein E �4 allele (APOE4), which is considered the56

major genetic risk factor for late-onset sporadic57

AD (LOAD) [7]. Genome-wide association studies58

(GWAS) have identified associations between disease59

status and several genes involved in lipid homeosta-60

sis, such as CLU (clusterin), SORL1 (sortilin-related61

receptor 1), ABCA7 (ATP-binding cassette, sub-62

family A, member 7), and PLD3 (phospholipase-D3)63

[7] in addition to the microglia related PLCG2 (phos-64

pholipase C-gamma) [8].65

Our study used targeted lipidomics data from66

the Alzheimer’s Disease Neuroimaging Initiative67

(ADNI) cohort to identify lipid alterations in the68

blood associated with AD pathology biomarker,69

namely cerebrospinal fluid (CSF) pTau/A�42 ratio,70

in people with preclinical or prodromal AD. In71

a secondary exploratory analysis, we determined72

lipidomic endophenotypes within prodromal and73

preclinical cases, respectively, using a consensus74

clustering approach. We investigated whether these75

lipidomic endophenotypes contributed to predicting76

subsequent clinical progression as determined by77

dementia rating score (CDR) conversion in preclini-78

cal and prodromal AD cases.

MATERIALS AND METHODS 79

Cohort overview 80

This study used data provided by the Alzheimer’s 81

Disease Neuroimaging Initiative (ADNI) database 82

(http://adni.loni.usc.edu). ADNI is a large, multicen- 83

ter, longitudinal study of older adults launched in 84

2003 by the National Institute on Aging, the National 85

Institute of Biomedical Imaging and Bioengineering, 86

the Food and Drug Administration, private phar- 87

maceutical companies, and non-profit organizations. 88

The study was designed to acquire serial neuroimag- 89

ing, clinical and neuropsychological assessments, 90

and other biologic markers to monitor the progression 91

of mild cognitive impairment (MCI) and early AD. A 92

full description of the study protocols and analytical 93

methods are provided at (http://www.adni-info.org/). 94

The final cohort consisted of 529 participants 95

from the ADNI cohort having a baseline diagno- 96

sis of either cognitively normal or mild cognitive 97

impairment along with complete CSF- biomarkers, 98

lipidomics, and body mass index (BMI) data. BMI 99

values were sorted into three categories as follows: 100

BMI low (average weight): 18.5–24.9 or (under- 101

weight): < 18.5, BMI medium (overweight): 25–29.9 102

and BMI high (at least moderately obese): > 30. We 103

further classified our participants into three diagnos- 104

tic groups based on their CSF pTau/A�42 status, such 105

that the cognitively normal (CN) group represents 106

cognitively normal participants with CSF pTau/A�42 107

below the cut-off (0.025) [9]. Preclinical and prodro- 108

mal groups had CSF pTau/A�42 above the optimized 109

cut-off and an initial diagnosis of cognitively normal 110

and MCI, respectively. 111

APOE genotyping 112

At the baseline visit, blood samples were obtai- 113

ned from the participants, shipped to the central 114

biomarker analysis lab at the University of Penn- 115

sylvania, and processed using an APOE genotyping 116

kit, as further described (http://adni.loni.usc.edu/wp- 117

content/uploads/2010/09/ADNI GeneralProcedures 118

Manual.pdf). For subsequent analysis, we coded par- 119

ticipants’ APOE genotype according to the presence 120

of �4 allele present as follows; 0: no �4 allele, 1 : 1 121

or 2 �4 alleles. 122

CSF biomarkers measurements 123

CSF amyloid-� (1-42) (CSF A�42) and CSF 124

Phospho-Tau (181P) (CSF pTau) were measured 125

http://adni.loni.usc.edu
http://www.adni-info.org/
http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf
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using the fully automated Roche Elecsys® immuno-126

assay platform at the UPenn/ADNI Biomarker Labo-127

ratory. CSF biomarkers A�42 and pTau/A�42 were128

binary classified based on the optimized cut-offs129

977 pg/ml and 0.025, respectively. These cut-offs130

were determined on the ADNI cohort then vali-131

dated against the visual reads of amyloid-� PET, as132

explained in [9].133

Lipidomics data134

Targeted Lipidomics analysis was carried out on135

the plasma samples from ADNI participants using136

ultra-high-performance liquid chromatography cou-137

pled with chromatographic separation to characterize138

isomeric and isobaric lipid species. Mass spectrom-139

etry analysis was performed on an Agilent (6490140

QQQ) mass spectrometer in positive ion mode with141

dynamic scheduled multiple reaction monitoring142

(MRM). The analysis was conducted following the143

lipidomics protocol developed by Kevin Huynh and144

Peter Meikle in Baker Heart and Diabetes Institute,145

Metabolomics laboratory. A detailed description of146

their lipidomics platform was provided in the method-147

ology file (ADNI ADMCLIPIDOMICSMEIKLEL148

ABLONG METHODS 20210121.pdf) and respec-149

tive articles [10,11].150

After applying the standard normalization and151

batch correction procedures, measurements from 692152

lipid species were provided in the file (ADMCLIPI153

DOMICSMEIKLELABLONG.csv). All the lipid154

measurements were log10 and z-transformed before155

any analysis. Lipid species (692) were then merged156

into one hundred and seven (107) composite scores157

defined through a hierarchical clustering approach158

that was applied within each of the lipid subclasses159

/classes.160

Statistical analysis161

Selection of salient lipids associated with162

biomarkers of AD pathology163

We used Bayesian elastic net regularized logistic164

regression to select lipid composite scores associated165

with the CSF pTau/A�42 ratio as a biomarker of AD166

pathology. Regularized logistic regression methods167

were developed to carry out simultaneous parame-168

ter estimation and variable selection [12, 13]. Elastic169

net offers an optimum regularization and variable170

selection, particularly in high dimensional data set-171

tings, such as the current lipidomics data, where172

features are often highly collinear, and their num-173

ber exceeds the sample size [13, 14]. As one of174

the regularization approaches, the elastic net pro- 175

vides a reasonable compromise between both ridge 176

(L2) and lasso (L1) penalties [13, 14]. It performs 177

an effective feature selection via the lasso penalty 178

while better handling correlated features via the ridge 179

penalty [14, 15]. Adopting a Bayesian approach pos- 180

sesses several advantages over classic elastic net 181

regularized regression [12, 16]. First, Bayesian meth- 182

ods provide a straightforward statistical inference 183

for the estimated coefficients through the posterior 184

distributions and credibility intervals [12, 16]. Sec- 185

ond, it allows for simultaneous estimation of both 186

penalty parameters (L2 & L1) and model parameters 187

[12, 16]. This is particularly important in controlling 188

the double shrinkage problem (too small, estimated 189

coefficients) due to sequential estimation of penalty 190

parameters through cross-validation procedure in the 191

classic method. Additionally, Bayesian approaches 192

have shown better variable selection in real data 193

examples and simulation studies [12]. 194

Before conducting the analysis, lipid composite 195

scores were transformed into W-scores using regres- 196

sion models estimated on the control group. W-scores 197

are analogous to Z-scores yet adjusted for particular 198

covariates, namely age and sex [17]. An initial filter- 199

ing step was carried out to include only the top 60% 200

of lipid composite scores correlated with the CSF 201

pTau/A�42 status in the regularized logistic regres- 202

sion models. Then, a Bayesian logistic regression 203

model with elastic net regularization was fitted in 204

the RStan interface. We adapted the scripts provided 205

by Sara van Erp on GitHub (https://github.com/sara- 206

vanerp/bayesreg), implementing elastic net priors in 207

Bayesian regularized regression models using Stan 208

language [16]. A training dataset (80% of the whole 209

cohort) was used for estimation of model parame- 210

ters through Markov Chain Monte Carlo (MCMC) 211

sampling (No-U-Turn Sampler (NUTS) algorithm). 212

The resulting estimates were then used to predict 213

the outcome in the test dataset (20 % of the whole 214

cohort). Lipid composite scores were selected based 215

on the credible interval criterion, where a variable is 216

excluded if the credibility interval covers 0. A credi- 217

bility interval level of 50% was used as recommended 218

in [12]. Salient lipid composite scores were deter- 219

mined based on being selected in more than 50% 220

of the cross-validation 100 iterations. Three different 221

models were calculated: 1) Reference model, using 222

the demographic criteria (Age and Sex); 2) Lipid 223

model, using lipid composite W-scores, and 3) Lipid 224

model + APOE4, where participants’ APOE4 status 225

was added as a covariate to the Lipid model.

https://github.com/sara-vanerp/bayesreg
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Prediction of clinical progression226

Lipidomic endophenotypes based on consensus227

clustering. We applied a hierarchical clustering on228

those lipid composite scores that had been found229

associated with the CSF pTau/A�42 ratio in the230

previous regularized regression analysis. The clus-231

tering was performed separately in the preclinical232

and prodromal subgroups, respectively. We employed233

a consensus clustering approach using data sub-234

sampling [18, 19], repeated 5,000 times to ensure235

the stability and robustness of clustering results.236

During each repetition, 80% of the data samples237

(participants) were randomly selected for agglomer-238

ative hierarchical clustering using Ward’s criterion239

to minimize the total within-cluster variance. A con-240

sensus matrix/cluster-based similarity matrix was241

then constructed. Each element in the matrix is a242

number between 0 and 1 inclusive, representing243

the proportion of times that two samples (partic-244

ipants) were clustered together out of the times245

that the same samples were chosen in the bootstrap246

sub-sampling process. Then final cluster assignment247

was defined through the consensus function, cluster-248

based similarity partitioning algorithm (CSPA), first249

introduced by Strehl and Ghosh and implemented250

in diceR library [18]. CSPA is an efficient con-251

sensus function that re-clusters the data samples252

through applying hierarchical clustering on the253

constructed consensus matrix [18, 19]. Hence the254

cluster labels are inferred at the hierarchy level255

of the optimal number of clusters (k) previously256

defined.257

The optimal number of clusters was defined based258

on a composite score combining the proportion of259

ambiguous clustering (PAC) score and Dunn’s index260

estimated within the consensus clustering. PAC is261

a robust estimate of cluster stability, mainly when262

data samples are not independent [20], an intrinsic263

feature of omics data. PAC score is the fraction of264

sample pairs with consensus index values falling in265

the intermediate interval, i.e., PAC window. In a per-266

fect clustering, the consensus matrix would consist267

of zeros or ones, and therefore the PAC score would268

be zero [20]. Thus, the lower the PAC score, the more269

stable and near perfect the clusters. We used a PAC270

window of (0.1,0.9) in our analysis.271

Conversely, Dunn’s index estimates clustering272

internal validity considering compactness and separa-273

tion measures [21]. The larger the Dunn’s index, the274

better the inter-cluster separability and intra-cluster275

compactness. The composite score was computed276

as PAC score divided by Dunn’s index value;277

accordingly, the lower the composite score, the better 278

the clustering. 279

Lipidomic endophenotypes and risk of CDR 280

conversion. We assessed the potential of the 281

defined lipidomic endophenotypes to predict Clini- 282

cal Dementia Rating score (CDR) conversion from a 283

value of 0 to 0.5 or 0.5 to 1 or higher in the preclin- 284

ical and prodromal sub-cohorts, respectively. Using 285

Bayesian survival analysis, we estimated the risk of 286

conversion over a follow-up period of six years (aver- 287

age follow-up = 4.15 + 1.72) while accounting for 288

censoring. We further explored the effect of several 289

covariates, namely age, sex, BMI, APOE4, and years 290

of education, on the estimated risk of conversion. 291

Finally, Bayesian multivariate analysis (MANOVA) 292

was conducted to reveal which lipid composite scores 293

distinguished clusters at low versus high risk of clin- 294

ical progression. 295

The whole analysis workflow is summarized in 296

Fig. 1. All analyses were performed in R (version 297

3.6.3) using the following packages: RStan (version 298

2.21.2), RStanArm, brms, bayestestR, BayesFactor, 299

pROC, diceR. 300

RESULTS 301

Demographic characteristics 302

A summary of the demographic characteristics of 303

our final cohort is provided in (Table 1). The diag- 304

nostic groups did not differ in age, sex, or education 305

years. The distribution of BMI categories differed 306

between groups; the preclinical group had the high- 307

est proportion of BMI-low category. As expected, the 308

APOE �4 allele was more prevalent in preclinical 309

and prodromal groups (≥60%) compared with the 310

normal control group (pTau/A�42 -ve) (18%). AD 311

CSF biomarker levels (pTau and pTau/A�42) were 312

higher in prodromal participants than in the preclini- 313

cal group. 314

Selection of salient lipids associated with biomark- 315

ers of AD pathology 316

Bayesian elastic net regularized logistic 317

regression models performance 318

Using only age and sex as predictors, the per- 319

formance of the Reference model was not better 320

than random prediction. The Lipid model improved 321

the prediction accuracy. The cross-validated area 322

under the receiver operating curves (CV-AUC), CV- 323

Accuracy, CV-Sensitivity, and CV-Specificity at the 324

optimum threshold were 0.65, 0.66, 0.68, and 0.61, 325
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Fig. 1. Overview of the data analysis workflow. This figure summarizes the analysis workflow adopted by this study as described in
the Materials and Methods section. Panel A displays the preparation of the final cohort based on the defined inclusion criteria then the
classification of the final diagnostic groups based on the CSF pTau/A�42 ratio. The statistical analysis is demonstrated in panels B and C.
Panel B illustrates the selection of salient lipids associated with biomarkers of AD pathology through Bayesian elastic net regularized logistic
regression models. Panel C explains the steps to predict clinical progression in the diagnostic groups, namely prodromal and preclinical.
First, we defined clusters of participants having similar lipid profiles within each diagnostic group. Then we explored the defined clusters
for the risk of conversion to MCI or dementia.

Table 1
Overview of cohort demographics

CN Preclinical Prodromal Whole cohort

N 182 73 274 529
Mean age (sd)a 73.2 (5.9) 75.9 (5.2) 73.3 (7.0) 73.6 (6.5)
Sex – Femalesb N (percent %) 88 (48 %) 41 (56 %) 109 (40 %) 238 (45 %)
APOE4 carriersb∗∗∗ N (percent %) 32 (18 %) 43 (59 %) 195 (71 %) 270 (51 %)
BMIb∗∗∗ N (percent %)

Low 50 (27%) 38 (52%) 113 (41%) 201 (38%)
Medium 85 (47%) 21 (29%) 126 (46%) 232 (44%)
High 47 (26 %) 14 (19 %) 35 (13%) 96 (18%)

Mean Education y (sd)a 16.3 (2.7) 16.0 (2.8) 15.9 (2.9) 16.1 (2.8)
CSF biomarkers
Mean A�42 (sd)a∗∗∗ 1727.0 (524.0) 634.0 (185.0) 630.0 (167.0) 1007.8 (620.4)
Mean pTau (sd)a∗∗∗ 20.1 (6.6) 28.8 (10.4)# 35.4 (14.1)# 29.2 (13.4)
Mean pTau/A�42 ratio (sd)a∗∗∗ 0.012 (0.003) 0.049 (0.025)# 0.059 (0.028)# 0.042 (0.03)

Summary of the demographic characteristics of our cohort split into the final three diagnostic groups cognitively
normal elderly (CN), preclinical and prodromal. Characteristics are described as Number (N) and the corresponding
percentage (percent %) or Mean value and standard deviation (sd) as convenient. Group differences were tested
using Bayesian ANOVA (a) and Bayesian test of association (b). Results were interpreted in terms of Bayes Factor
(BF) in favor of presence of group differences in the tested variables, where BF of (3–20) represented moderate
evidence (∗), BF of (20–150) represented strong evidence (∗∗) while BF of (>150) represented very strong evidence
(∗∗∗). Differences in levels of CSF biomarkers levels between Preclinical and Prodromal are marked by (#).

respectively. However, the best performance was326

achieved by the Lipid + APOE4 model; the esti-327

mated CV-AUC, CV-Accuracy, CV-Sensitivity, and328

CV-Specificity increased to 0.76, 0.71, 0.69, and329

0.77, respectively. Supplementary Table 1 provides330

an overview of all tested models.331

Identification of salient lipids332

The Lipid + APOE4 model selected a set of twenty-333

eight lipid composite scores in at least 50% of334

cross-validation repetitions (Supplementary Table 335

2). A features’ relative importance and stability were 336

determined by the median posterior �-coefficients 337

and frequency of selection across the cross- 338

validations. According to these criteria, lyso-glycero- 339

phospholipids (LPL), alkenyl-glycerophospholipids 340

(plasmalogens), free fatty acids (FFA), cholesterol 341

esters and sphingolipids (complex ceramides) lipid 342

classes/subclasses ranked on top of the list. Both lyso- 343

phosphatidylcholine (LPC 7: poly-unsaturated fatty 344
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acid (PUFA)) and lyso-alkyl-phosphatidylcholine345

(LPC O 2: long-chain fatty acid (FA)) were posi-346

tively associated with the CSF pTau/ A�42 ratio.347

Similarly, phosphatidylcholine (PC 5: arachidonic348

acid (AA)) harboring arachidonic acid showed a pos-349

itive association. Conversely, plasmalogens such as350

alkenyl- phosphatidylcholine (PC P 5: docosahex-351

aenoic acid (DHA), Eicosapentaenoic acid (EPA) &352

PC P 2: saturated and mono-unsaturated FA) and353

alkenyl- phosphatidylethanolamine (PE P 5: AA,354

DHA) showed negative associations.355

Except for AA (FA 3), free fatty acids (FA 1: sat-356

urated, mono-unsaturated, PUFA) were negatively357

associated with the AD biomarkers. Cholesterol358

esters (Chols ester 3: PUFA & Chols ester 2) and359

long-chain acyl-carnitines (AC 4: PUFA) were360

positively associated with AD biomarkers, while361

di-acylglycerol (DG 3: EPA, DHA) and alkyl-di-362

acylglycerol (TG O 3) showed negative relation.363

Complex ceramides including hexosyl-ceramides364

(hexCER 6 & hexCER 7), gangliosides (GM1), and365

sulfatides were found to be positively associated with366

AD biomarkers yet di-hydro-ceramides (dhCER 1),367

gangliosides (GM3 3: very long FA), and sphin-368

gomyelin (SM 3: very long FA) were negatively369

associated. Figure 2 displays the median posterior �-370

coefficients and their credibility intervals across the371

cross-validations, as estimated by the Lipid + APOE4372

model. Lipid species, constituting each of the salient373

lipid composite scores, are listed in Supplementary374

Table 3.375

Prediction of clinical progression376

Lipidomic endophenotypes based on consensus377

clustering378

We conducted consensus clustering to identify379

lipidomic endophenotypes based on the set of lipid380

composite scores selected by the Lipid + APOE4381

model.382

In the prodromal sub-cohort, we determined the383

optimum number of clusters to be (k = 5), as demon-384

strated in Supplementary Figure 1. Of the prodromal385

participants, 28% fell into the cluster (I), 23% in the386

cluster (IV), 20% each in the clusters (II) and (V),387

and 9% in the cluster (III). Apart from the BMI cate-388

gories distribution, there was no conclusive evidence389

for differences in age, sex, years of education, APOE4390

status, or the CSF levels of AD biomarkers between391

the defined clusters (Supplementary Table 4).392

Following the same approach, we determined (k =393

5) the optimal number of clusters for the preclinical394

sub-cohort, as shown in Supplementary Figure 2. Of 395

these participants, 28% fell into the cluster (I), while 396

the rest were equally distributed over the remaining 397

clusters. Details on the distribution of demographic 398

characteristics, APOE4 genotype, and BMI cate- 399

gories can be found in Supplementary Table 5. 400

Lipidomic endophenotypes and risk of CDR 401

conversion 402

We evaluated the risk of CDR conversion among 403

prodromal sub-cohort clusters with and without 404

adjusting for the effect of covariates as demonstrated 405

in Supplementary Table 6. Cluster (IV) was chosen as 406

the reference group since it exhibited a lower risk of 407

CDR conversion. Moreover, cluster (IV) enclosed a 408

relatively large proportion of participants. As shown 409

in Fig. 3, the clusters (II) (HR = 1.97 (1.26–3.10)) and 410

(V) (HR = 1.99 (1.30–3.00)) had an increased risk of 411

conversion in the APOE4 adjusted model. To inves- 412

tigate whether these effects differed between sexes, 413

we repeated the Bayesian survival models (APOE4 414

adjusted) in the male and female data subsets, respec- 415

tively (Table 2). In men, the lipid profiles of clusters 416

(II and V) showed an increased risk of conversion, 417

whereas cluster (III) showed a decreased risk of 418

conversion relative to the reference cluster (IV). In 419

women, only cluster (II) had an increased risk of 420

conversion. 421

Finally, we conducted Bayesian multivariate anal- 422

ysis to identify differences in lipid composite scores 423

between the reference cluster (IV) and the remaining 424

clusters (Supplementary Table 7). Figure 4 shows the 425

specific lipid profile for each cluster of the prodromal 426

sub-cohort. 427

In the preclinical sub-cohort, there was no evidence 428

of a difference in risk of CDR conversion between 429

the five clusters. Essentially identical results were 430

obtained whether we adjusted or not for covariates. 431

DISCUSSION 432

We explored different lipid classes in preclinical 433

and prodromal AD cases to analyze the relationship 434

between lipid metabolism markers and biomarkers 435

of amyloid and tau pathology, as well as clinical pro- 436

gression. 437

Our first goal was to determine associations be- 438

tween peripheral lipid alterations and pathology 439

markers of AD in the CSF. Ether glycerophospho- 440

lipids, particularly plasmalogens, showed lower 441

levels in preclinical and prodromal AD participants 442
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Fig. 2. Salient lipids associated with CSF pTau/A�42 ratio. We used Bayesian elastic net logistic regression (Lipid+APOE4 model) to select
salient lipid composite scores associated with CSF pTau/A�42 ratio. Estimated posterior �-coefficients are represented as points with their
respective 50% and 90% credibility intervals as thick and thin error bars, respectively. The points’ color codes for their corresponding
lipid class. LPC O 2: Lyso-alkyl-phosphatidylcholine (long/ very long FA), Choles ester 3: Cholesteryl ester (PUFA), hexCER: Hexosyl-
ceramide, FA 3: Free fatty acid (AA), PC 5: Phosphatidylcholine (AA), LPC 7: Lysophosphatidylcholine (PUFA), AC 4: Acylcarnitine
(PUFA), GM1: GM1 gangliosides, Choles ester 2: Cholesteryl ester, SULF 1: Sulfatides, LPE 1: Lyso-phosphatidylethanolamine (satu-
rated FA), PI 1: Phosphatidylinositol (PUFA), LPI 3: Lyso-phosphatidylinositol (AA), GM3 3: GM3 gangliosides (very long FA), dhCER:
Dihydroceramide, LPC P 2: Lyso-alkenyl-phosphatidylcholine (long FA), SM 3: Sphingomyelin (very long saturated FA), PI 2: Phos-
phatidylinositol (saturated, monounsaturated FA), LPC 5: Lysophosphatidylcholine (long, very long FA), LPC 2: Lysophosphatidylcholine
(odd numbered FA), TG O 3: Alkyl-diacylglycerol, DG 3: diacylglycerol (EPA & DHA), PC P 2: Alkenyl-phosphatidylcholine (saturated
and mono-unsaturated FA), PE P 5: Alkenyl-phosphatidylethanolamine (AA, DHA), PC P 5: Alkenyl-phosphatidylcholine (DHA & EPA)
and FA 1: Free fatty acid.

compared with controls. Conversely, we found ara-443

chidonic acid-containing phosphatidylcholine,444

PUFA (omega-3) lyso-phosphatidylcholine and lyso-445

alkyl-phosphatidylcholine with predominant satu-446

rated/mono-unsaturated long-chain fatty acid to be447

increased. Low levels of plasmalogens have been448

frequently linked to AD pathology [22], whether449

measured in brain tissue [23–25], CSF [25], or450

plasma blood samples [26]. Grey matter plasmalo-451

gens (DHA and AA at sn-2) depletion was found452

associated with disease progression and severity in453

AD patients [27–30]. A recent study by Lim et al. 454

proposed that ether-lipids dysregulation may partly 455

mediate the effect of two major AD risk factors, 456

namely, age and APOE4 [31]. 457

Toledo et al. showed that higher baseline levels of 458

long-chain and PUFA-containing alkyl phosphatidyl- 459

cholines (PC ae 42 : 4, PC ae 44 : 4) correlated with 460

abnormal levels of CSF A�42 in preclinical and pro- 461

dromal AD participants of the ADNI cohort and 462

predicted conversion from MCI to AD dementia 463

[32]. In the current study, we observed high levels 464
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Fig. 3. Lipid endophenotypes predict clinical progression to dementia. We conducted a Bayesian survival analysis to estimate the risk of
clinical progression to dementia among the pre-defined clusters of the prodromal sub-cohort. Clinical progression in the prodromal sub-cohort
is defined as the conversion of clinical dementia rating score (CDR) from a value of 0.5 to 1. Clusters (II and V) are found to have � 2 folds
higher risk of progression to dementia compared to the reference cluster (IV).

Table 2
Risk of clinical progression among prodromal lipidomic endophenotypes

Model Cluster + APOE4 Male subset Female subset

Median Hazard HDI Median Hazard HDI Median Hazard HDI
(MAD) ratio (MAD) ratio (MAD) ratio

Intercept: IV −9.03 (1.80) –8.46 (2.20) –9.24 (2.72)
I 0.02 (0.26) 1.02 0.68–1.52 –0.16 (0.32) 0.85 0.54–1.51 0.28 (0.42) 1.33 0.68–2.72
II 0.68 (0.28) 1.97 1.26–3.10 0.56 (0.35) 1.75 1.04–3.16 0.84 (0.43) 2.32 1.15–4.57
III –0.41 (0.42) 0.66 0.36–1.22 –1.08 (0.58) 0.34 0.13–0.89 0.09 (0.54) 1.10 0.48–2.56
V 0.69 (0.26) 1.99 1.30–3.00 0.85 (0.34) 2.35 1.38–4.06 0.55 (0.43) 1.74 0.89–3.53
APOE4 0.39 (0.21) 1.48 1.07–2.05 0.40 (0.27) 1.50 1.00–2.25 0.27 (0.33) 1.31 0.76–2.23

Bayesian survival analysis was conducted to estimate the relative risk of progression to dementia among prodromal lipidomic endophenotypes
while adjusting for APOE4. APOE4 adjusted model was selected based on the sensitivity analysis provided in Supplementary Table 6, which
investigated the relative risk of several covariates. We further replicated the same model on male and female subsets separately to explore
sex-specific effect of lipidomic endophenotypes on clinical progression. Throughout the analysis, we set cluster (IV) as our reference group.
Results were interpreted in terms of high-density intervals (HDI) of posterior distributions, where hazard ratios with HDI not covering (1)
were considered relevant and reported in red.

of arachidonic acid-containing phosphatidylcholine,465

and long-chain alkyl lyso-phosphatidylcholines466

(LPC-O), were associated with the CSF pTau/A�42467

ratio. Results from both studies suggest an early role468

of arachidonated phosphatidylcholines, particularly469

long-chain alkyl isomers and their lyso derivatives,470

in AD pathogenesis, even in cognitively normal indi-471

viduals with pathological levels of CSF AD biomar-472

kers. These phosphatidylcholine species are known473

precursors of potent inflammatory mediators, includ- 474

ing platelet-activating factor (PAF) and arachidonic 475

acid. Additionally, they are highly abundant in 476

platelets and immune cells [33, 34]. This points to 477

a potential regulatory role in inflammation processes 478

and would represent a possible link between inflam- 479

mation and AD [32]. 480

Complex ceramides, including glycosylated cera- 481

mides, GM1 gangliosides, and their precursors 482
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Fig. 4. Heterogeneity of lipidomic endophenotypes among the prodromal sub-cohort. The specific lipid profile of each cluster is demonstrated
on a heatmap in terms of average w-scores. On the color scale, red represents scores higher than expected in the age and sex-matched
control group, and blue color represents lower scores. Bayesian multivariate analysis was conducted to identify lipid composite scores
distinguishing clusters at higher risk of clinical progression from the reference group. Cluster (IV) was set as the reference group and
marked by (Ref.). Clusters (II and V) were defined as groups at higher risk of progression and marked by (#). Asterisk (∗) points to lipid
scores that showed evidence of group differences. PC 5: Phosphatidylcholine (AA), PC P 2: Alkenyl-phosphatidylcholine (saturated and
mono-unsaturated FA), PC P 5: Alkenyl-phosphatidylcholine (DHA & EPA), PE P 5: Alkenyl-phosphatidylethanolamine (AA, DHA),
PI 1: Phosphatidylinositol (PUFA), PI 2: Phosphatidylinositol (saturated, monounsaturated FA), LPC 2: Lysophosphatidylcholine (odd
numbered FA), LPC 5: Lysophosphatidylcholine (long, very long FA), LPC 7: Lysophosphatidylcholine (PUFA), LPC O 2: Lyso-alkyl-
phosphatidylcholine (long/very long FA), LPC P 2: Lyso-alkenyl-phosphatidylcholine (long FA), LPE 1: Lyso-phosphatidylethanolamine
(saturated FA), LPI 3: Lyso-phosphatidylinositol (AA), dhCER: Dihydroceramide, hexCER: Hexosyl-ceramide, GM3 3: GM3 gangliosides
(very long FA), GM1: GM1 gangliosides, SM 3: Sphingomyelin (very long saturated FA), SULF 1: Sulfatides, Choles ester 2: Cholesteryl
ester, Choles ester 3: Cholesteryl ester (PUFA), DG 3: diacylglycerol (EPA & DHA), TG O 3: Alkyl-diacylglycerol, FA 1: Free fatty acid,
FA 3: Free fatty acid (AA) and AC 4: Acylcarnitine (PUFA).

hexosyl-ceramides and sulfatides, showed higher lev-483

els in prodromal and preclinical AD participants, in484

contrast to di-hydro-ceramides, sphingomyelins, and485

GM3 gangliosides, which were decreased. Several486

studies suggested a shift in sphingolipids metabolism487

towards ceramides accumulation [35, 36] and deple-488

tion of sphingomyelins, particularly those with489

long-chain FA (C22, C24) [37, 38] and sulfated490

sphingolipids [35] early in the course of AD [39].491

Ceramides, a key bioactive molecule in sphingolipids492

metabolism, were suggested to contribute to the493

increased susceptibility of neurons and oligodendro-494

cytes to apoptotic cell death [40]. This hypothesis495

was further supported by the elevated activity of 496

enzymes involved in ceramides synthesis, namely 497

sphingomyelinases and ceramidases, in brain tissue 498

of AD cases [38]. Consistent with these findings, gene 499

expression of sphingomyelinases and serine palmi- 500

toyl transferase enzymes was found to be upregulated 501

in AD patients’ brain tissue [36, 39]. 502

The second goal of our study was to identify 503

distinct lipidomic endophenotypes and assess their 504

association with clinical progression. Lipidomics 505

endophenotyping offers a global mapping of the 506

alterations in biochemical pathways [41]. These alter- 507

ations may partly reflect underlying AD pathology. 508
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Additionally, these endophenotypes can capture com-509

plementary information related to an individual’s510

specific comorbidities and/or genomic characteris-511

tics that could partly explain the diversity observed512

in clinical trajectories within AD populations [3]. In513

the prodromal sub-cohort, the lipid profiles of clus-514

ters (II and V) were associated with a higher risk of515

clinical progression. In both clusters, we observed516

lower levels of PUFA (mainly AA) containing plas-517

malogens and phosphatidylcholines associated with518

a compensatory increase of plasmalogens, mainly519

alkenyl phosphatidylcholines, containing saturated520

and mono-unsaturated FAs. Higher levels of choles-521

terol esters, complex ceramides together with the522

depletion of long-chain sphingomyelins, and di-523

hydro-ceramides were also noted in clusters (II and524

V) participants. Cluster (III) lipidomic profile was525

associated with a lower risk of progression (CDR con-526

version) yet only in men. Cluster (III) constituted a527

group of prodromal participants with a higher preva-528

lence of low BMI and a slightly higher proportion of529

APOE4 carriers compared with the reference cluster530

(IV).531

Previous studies used logistic regression or532

machine learning algorithms to investigate the asso-533

ciation of lipids with dementia risk in cognitively534

normal individuals [42–44] and people with MCI535

[32, 45]. Several studies have found higher levels of536

sphingomyelin, phosphatidylcholines, and lysophos-537

phatidylcholine associated with conversion from538

MCI to AD/dementia [32, 46, 47]. Conversely, Map-539

stone et al. [43] and Ma et al. [45] showed that540

lower baseline levels of phosphatidylcholines and541

lysophosphatidylcholine were significantly associ-542

ated with accelerated cognitive decline [45] and risk543

of conversion to MCI/AD compared to cognitively544

stable participants [43].545

In a different approach, Wood et al. [48] addressed546

heterogeneity in lipid alterations patterns within547

groups of MCI and AD cases. They defined sub-548

groups within each diagnostic group according to549

their Mini-Mental State Examination score (low ver-550

sus high). Based on the literature, they focused on two551

lipid classes, ethanolamine plasmalogens and diacyl-552

glycerols. MCI and AD cases had elevated levels553

of diacylglycerols and plasmalogens depletion com-554

pared with controls [48]. Low and high Mini-Mental555

State Examination MCI cases, however, showed no556

differences in both lipid classes [48]. In contrast to557

such a hypothesis-driven approach, here we explored558

the diversity of lipidomic endophenotypes within559

prodromal cases using an unsupervised clustering560

approach. Thus, our findings serve to generate rather 561

than confirm hypotheses on the association of lipid 562

profiles with the risk of conversion. 563

Recent evidence suggested that sex has an effect on 564

the association of lipids with AD pathology and rates 565

of cognitive decline [31, 49, 50]. In our study, cluster 566

(III) showed a decreased risk of conversion in men but 567

not in women. This cluster had high levels of long- 568

chain fatty acids lysophosphatidylcholine (both acyl 569

and ether) and plasmalogens together with low lev- 570

els of acylcarnitines. Sex-specific remodeling of lipid 571

metabolism was suggested before, where high lev- 572

els of sphingomyelins and phosphatidylcholines were 573

reported in women [49, 50]. Conversely, lysophos- 574

phatidylcholine and ceramides were found at higher 575

levels in men [49]. Thus, phospholipases may have 576

higher activity in men and sphingomyelin synthetase 577

may have a higher activity in women [49]. Conse- 578

quently, we adjusted lipid scores for age and sex based 579

on the control group in an attempt to control for the 580

complex interaction of lipids with sex during different 581

stages of AD. Although we started with a substantial 582

number of cases, the sample size within preclinical 583

and prodromal sub-cohorts and their respective lipid 584

endophenotypes clusters was small, so that it was not 585

feasible to conduct the full analysis in a sex-stratified 586

fashion, as recommended in [49, 50]. 587

Lack of consistency across metabolomics studies’ 588

results always was and still is a major limitation 589

that hinders including lipid markers into diagnostic 590

biomarker panels of AD [50, 51]. This heterogeneity 591

is related to many factors, among them variability 592

in data processing procedures and analytical plat- 593

forms [51], as well as studies’ design, sample size, 594

distribution of relevant risk factors, and used sta- 595

tistical approaches [50]. Another factor probably 596

is the lack of strong effects which contributes to 597

inconsistent findings across studies. In our Bayesian 598

regression models, we observed overall small con- 599

tributions from individual lipid composite scores to 600

the association with AD pathology CSF biomark- 601

ers as indicated by poor model performance as well 602

as small posterior coefficients with large credibility 603

intervals. In addition, metabolomics data are inher- 604

ently highly collinear. This could contribute to high 605

variance observed within the models and difficulty 606

assessing variables’ relative importance [52]. Taken 607

together, a wide range of variance is observed in 608

metabolomics data that limits their integration in the 609

first line of diagnostic workflow and renders them 610

likely more useful in adding to the accuracy of other 611

prognostic markers [48]. 612
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Several limitations need to be acknowledged in613

this study. Instead of using raw lipid scores, we used614

composite scores based on hierarchical clustering615

applied within each lipid class. Such an approach616

could have masked the effects of some individual617

lipid species. Our objective was to reduce data dimen-618

sionality and overcome the drawback of variables’619

multicollinearity, particularly on regression coeffi-620

cients estimation and model stability. Concurrently621

we wanted to maintain the representation of all inves-622

tigated lipid subclasses/classes and identify subsets623

of functionally similar lipid species. Finally, given624

the heterogeneity of lipidomics data, particularly in625

early AD individuals, even larger cohorts are needed626

to identify endophenotypes robustly. In future anal-627

ysis, we would like to tune and then validate our628

approach on a larger sample derived from multiple629

cohorts and particularly enriched with participants in630

the preclinical stage of AD.631

CONCLUSION632

Through our study, we have shown that alter-633

ations in lipids, particularly those harboring poly-634

unsaturated fatty acids and ether bonds, can be635

captured at the earliest stages of AD. Lipidomics pro-636

files provide an overview of an individual’s metabolic637

status whilst incorporating the balance within and638

between interacting biochemical pathways. Hence,639

identifying distinct lipidomic endophenotypes could640

contribute to AD risk and clinical trajectories. Refin-641

ing and validating this approach could open a new642

avenue to adjuvant interventions modulating lipid643

metabolic pathways and allow for targeting subjects644

with the largest expected benefit.645
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